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ABSTRACT

The Stanford Free Electron Laser (FEL), like many FELs is driven by extremely

short electron pulses which drive equally short optical pulses. Simulations of the

Stanford FEL describe the trapped-particle instability leading to sideband frequencies

and limit-cycle behavior. Comparisons are made of recent experimental results that

show close agreement between the desynchronism curves, optical spectra, and the

electron spectra.

The second part of this thesis analyzes sideband behavior when two modes are

present in an FEL oscillator. Using two-mode wave and pendulum equations derived

from Maxwell's and the Lorentz force equations, the gain and phase shift for each

initial phase of the two-mode optical field can be determined numerically. Averaging

over all initial phases determines the FEL optical performance. In steady-state the

presence of the sideband effectively reduces the undulator's length, delaying the onset

of saturation. This allows more power to be generated in the optical field then

possible with only a single mode.
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I. INTRODUCTION

Free Electron Lasers (FELs) hold the promise of being reliable, versatile, and

powerful sources of coherent radiation. The initial concept for the FEL was first

proposed by John Madey in 1970 [Ref. 11. He and his colleagues successfully

demonstrated an operating FEL in 1976 and 1977 [Ref. 2,3]. Since then, many FELs

have been built and are operating at Universities and Government Labs around the

world, with still more projects on the drawing board. Active research continues in all

aspects of FELs, from the basic physics of the FEL interaction to lasing with harmonics

and ultra short-undulators.

There are many reasons for the interest shown in FEL design and operation.

Using a relativistic electron beam as the source for coherent radiation the FEL has the

potential for average optical power outputs in the multi-megawatt range. An FEL can

be made continuously tunable over an order-of-magnitude by adjustments in the

electron beam energy or the undulator magnetic field strength. Since the FEL

interaction takes place in a vacuum containing nothing but electrons, a magnetic field,

and light, the problems confronting high power lasers using some type of lasing

medium are absent in the FEL.

Many of todays FELs use rf accelerators that produce extremely short electron

pulses driving equally short optical pulses in an FEL oscillator. Because of their

reliability and maturity, rf accelerators for the near future will continue to play an

important role in FEL design. Short electron pulses and the non-linear trapped-particle

instability combine to cause optical sidebands and limit-cycle behavior of the output

power. Experiments run at the Stanford FEL which demonstrated these characteristics

and are compared to simulations performed at the Naval Postgraduate School.

Chapter II gives a brief overview of FEL theory while chapter III discusses the

characteristics of short pulse FELs and analyzes the results from the Stanford FEL
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experiment and simulations.

The formation of sidebands are not limited to short-pulse FELs. Any FEL with a

strong enough optical field can generate a sideband from the electrons trapped in the

optical field. Chapter IV uses a simple two-mode model to study sideband behavior.

The electron motion in the presence of a sideband is analyzed, as well as the optical

evolution of each mode. This research gives a better understanding of FEL

performance with sidebands present.

The most significant contributions in this thesis are summarized below.

1. Short pulse simulations of the Stanford FEL qualitatively and quantitatively model

results from experiments exhibiting the trapped-particle instability and limit cycle

behavior.

2. The effect of the trapped-particle instability on the electron phase-space dynamics

is explained.

3. The effect of individual sideband phases on electron dynamics and optical

development is examined.

4. The mechanism by which sidebands act to decrease the undulator's effective

length, leading to higher power at saturation, is explained.

5. The validity of the two-made wave equations are verified over a wide range of

conditions by comparisons with energy conservation methods.

6. The two-mode wave equations are used to analyze the gain for each mode

separately, as well as the optical field phase shift.
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II. FREE ELECTRON LASER THEORY

A. BASIC FREE ELECTRON LASER PHYSICS

An FEL consists of three major components, an electron accelerator, an

undulator or wiggler consisting of a periodic magnetic field, and an optical resonator to

store the ampified light in the case of an FEL oscillator. A relativistic beam of

electrons enters the undulator causing them to "wiggle" as they traverse its length.

The wiggling electrons spontaneously radiate in a narrow cone in the forward direction.

With mirrors placed on each end of the undulator, some of the radiation is stored.

Subsequent electrons entering the undulator undergo stimulated emission in the

presense of the stored radiation leading to coherent radiation.

The description above uses quantum mechanical concepts to describe the basic

FEL interaction, but due to the large number of photons in the FEL resonator at any

time, the optical field can be described as a classical electromagnetic wave [Ref. 4].

Therefore, classical electromagnetic theory can be used to describe the interaction

between electrons, light, and the undulator. Figure 2-1 illustrates a relativistic electron

inside an undulator being acted upon by the undulator field and a radiation or optical

field. When the electron is given a velocity component out of the paper or in the y

direction due to the undulator field and at the same time the magnetic field from the

optical wave is directed downwards in the -x direction, then, the electron experiences a

retarding force opposing its forward motion down the axis of the undulator. This

opposing Lorentz force causes the electron to lose energy. Since the interaction

occurs in a vacuum, the energy loss from the electron goes to the optical field causing

amplification. The phase of the electrons relative to the optical wave is extremely

important. If a majority of electrons are in the wrong phase they will gain energy from

3
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Figure 2-1: Electron motion inside an FEL undulator

the optical field. As will be shown, the electron dynamics and optical field

development can be described with a simple pendulum equation and self-consistent

wave equation.

Before going on further with a classical approach to FEL dynamics, it should be

noted that one of the consequences of using relativistic electrons is the possibility of

generating short wavelength light. Electrons entering the undulator with energy ymc 2

where y is the Lorentz factor, m the electron mass, and c the velocity of light, will see

the undulator wavelength X0 is Lorentz contracted. The relativistic electrons will

radiate laser light with a wavelength A. = Ao/29. By changing the electron beam

energy, the laser can be continuously tuned to different wavelengths. A typical FEL
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with X0 = 5 cm using a 50 MeV electron beam will radiate at X = 2gm. A doubling of

the electron beam energy causes the FEL to approach optical wavelengths.

B. THE SIMPLE PENDULUM EQUATION

In order to understand the FEL interaction it is first necessary to understand the

individual electron motion in the presence of the optical and undulator fields as

governed by the Lorentz force equations

dt -e b #R)] (2-1)

dt mc

where E'R and OR are the optical electric and magnetic fields, 11 is the undulator

magnetic field, le I is the electron charge magnitude, and Oc is the electron velocity. It

should be noted that this and all other derivations assume cgs units. For simplicity

and for the sake of consistency with the rest of the thesis, the undulator is assumed to

be helically polarized with a static magnetic field of the form

LY = B(cos(koz), sin(koz), 0) , (2-2)

where B is the magnetic field strength, ko = 2xrA 0 is the undulator's field wave

number, and z is the longitudinal distance along the undulator. The optical field

present in the undulator is assumed to be a circularly polarized plane wave with the

form

9R = E(cosy, -sinW, 0) ,BR = E(siny, cosxv, 0) , (2-3)

where E is the optical field strength, and ' = kz - wt + 0 with k the wave number, 0)

the radial frequency, and 0 the optical phase angle.

Substituting (2-2) and (2-3) into the Lorentz force equations (2-1) and separating

the equations into components of transverse (perpendicular) motion, and longitudinal
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(z-motion) yields

= _ec[E(1 - Pz)(cosy, -sinW, 0) + PzB(-sinkoz, coskoz, 0)] , (2-4)
dt mc

d(3z) = -e [E(PxCOSs - P3ysin4f) + 8(3xsinkoz - Pycoskoz)] , (2-5)
dt mc

dy=-:e E[P3xcosW - PysinV] , (2-6)

dt mc

where 0 = (Ox, fy, 0). For relativistic electrons Oz -4 1, so that E(1 - Pz) ,c BI3z, and

transverse motion due to the optical field in (2-4) may be neglected. This allows (2-4)

to be solved by inspection yielding the transverse electron motion

= -- (coskoz, sinkoz, 0) , (2-7)

where K = eBAo121mc2 , and is referred to as the undulator parameter. For most FEL

applications K = 1. approximation. Substituting (2-7) into (2-6) gives the electron

energy change with respect to time

.eKE
S=ecos( + 4) , (2-8)

ymc

where r = (k + ko)z - (ot is a dimensionless microscopic variable that describes the

electrons phase with respect to the optical and undulator field. From (2-8), if

-ir2 < r + 0 < %/2, the electrons will be gaining energy from the optical wave, while if

x,/2 < , + 0 < 3/2, the electrons are losing energy to the optical wave. If electrons

with an initial random dispersion in C can be made to bunch with ,/2 < < 3r 2 as

they travel down the undulator, then the FEL will experience growth of the optical

wave.

Further simplification of (2-8) can be made by relating y to . By noting that

2= 1 - z 2 - 12, it can be shown that [Ref. 4]
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k{(1 + K2) (2-9)
2-?

which is referred to as the resonance condition, and

2k7 2o (2-10)2koc 2(oo

Equating (2-8), the energy equation and (2-10) results in the simple pendulum

equation

= 2eo°KEcos(c + 0) (2-11)
y2mc

A more useful form of (2-11) is constructed by defining a dimensionless time 'r = ctIL.

Note that r = 0 -- 1 as the electrons travel down the length of the undulator. The

simple pendulum equation now becomes
00

C= lalcos( + ) , (2-12)

where .... refers to differentiation with respect to r, and the dimensionless optical

field is a = lale iO where the dimensionless optical field strength is

la I = (4xeKELN)i(ymc 2). Since la I is proportional to the optical wave field strength

E, it is indeed meaningful and (2-12) shows how the changes in electron phase and

energy are dependent on the phase position and optical field strength. The next step

is to derive an equation which expresses the change in the field a in terms of t,.

C. THE SELF-CONSISTENT WAVE EQUATION

The Lorentz force equation was used to describe the electron dynamics within

the optical and undulator fields. To describe the optical wave evolution requires the

use of Maxwell's wave equation

c 2  t -c - (2-13)

where the vector potential for the optical field is given by
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ER
A -- (sin-VcosWO) , (2.-14)

k

and .7tis the transverse current from the transverse electron beam motion. The optical

field is taken to vary slowly over an optical wavelength (ER -c oER, -c o*4). This is

referred to as the slowly-varying-amplitude-and-phase-approximation (SVAP) which is

to be expected from a coherent light source. This approximation allows second

derivatives resulting from (2-13) to be neglected resulting in

2 2  R (cosWV,-sinV,O) (2-15)

2ER a(sin,cosW,O) =4n I
c at ,

from the substitution of (2-14) into (2-13).

Looking at the right hand side of (2-13), the electron current is given by

Zt =-eco.,83(k - 7') where 4 is the position of the i'th electron, and 63( * - i) is the

three dimensional Dirac delta function [Ref. 5]. Substituting in the electron transverse

motion P from (2-7) yields the transverse particle current

i = e2B (coskoz, sinkoz, 0)53(3 - -) (2-16)

Substituting (2-16) into (2-15), projecting two orthogonal unit vectors

C, = (cosW,-sinW,O) 92 = (sinf,cosW,O) (2-17)

onto the resultant yields two equations. Summing over all particles to obtain the total

transverse current, and averaging both equations at a fixed time over a small volume

element [Ref. 3] gives

1 ZIER _ 2eKp < cos(, + > (2-18)
C at 7

and

ER = 2ReKp< sin( + $)> , (2-19)

C at Y

8



where p is the electron particle density, and the brackets represent the average value

taken from all the sampled electrons. By defining the dimensionless current density as

8N(exKL) 2p
?mc2  (2-20)

equations (3-6) and (3-7) are further simplified to

0la I = -j< cos( + 0) > (2-21)

and

--- < sin( + ) > (2-22)

lal

Equations (2-21) and (2-22) show how the optical wave amplitude and phase evolve

with the electron phase ,. Bunching of the electrons around the phase r = x leads to

growth of the optical wave and gain, while bunching electrons around C = X12 causes

the optical phase to be driven. Increasing the current density j can lead to high gain

and large phase evolution, but as the optical field increases it will act as a retarding

influence on the phase evolution. Values of j = x result in low gain, while values of

j :t x result in high gain.

D. PHASE SPACE AND THE LOW CURRENT, LOW GAIN FEL

The electron phase velocity is given by

v=. =L[(ko+k)Pz -k] (2-23)

The phase velocity v increases with electron energy, and decreases when the electron

loses energy to the optical wave. When v = 0, the electron is said to be at resonance

with the undulator and optical fields. A resonant electron will pass through one

undulator period as one optical wavelength passes over it. This condition, while giving

maximum coupling with the optical field, does not give maximum gain for a collection

of electrons that are initially dispersed in C along many optical wavelengths. The initial

conditions of any electron in phase space are given by r0 = C(0) and vo = v(0) at r = 0.

9



In the case of low gain or low j, the optical field experiences only small changes down

the length of the undulator. For this case the electrons follow approximately fixed

paths in phase-space as in the case of a simple pendulum. The fixed phase space

paths are given by

V2 = V 2 - 21 la[sin( + 0) - sin(Q)] (2-24)

In the low gain regime, the phase-space points v0 = 0 and =-3i/2, ir2 are

"unstable fixed points" that would correspond to a mechanical pendulum being at the

top of its arc. Electrons near these points evolve slowly with time. The point vo = 0

and = x/2 are "stable fixed points", corresponding to a pendulum at the bottom of

its arc. Electrons at these points do not evolve at all. The "separatrix" is a curve in

phase space that separates open and closed phase-space paths, and is given by

vS2 = 2la1[1 - sin( , + 0)] , (2-25)

which is derived by substituting the values for the unstable fixed points into (2-23).

The peak-to-peak height of the separatrix is 41a 11/2, and the horizontal position is

determined by the optical phase .

Figure 2-2 illustrates electron evolution in the ( ,v = ) phase space for weak

fields, la 1 :5 n, and low gain, j < x, by numerically solving the pendulum and wave

equations. The electrons are injected into the undulator at x = 0 with j = 1, at an initial

energy slightly off resonance vo = 2.6, uniformly distributed in phase =-r2-3rd2,

into an optical field with an initial value of la (0)1 = ao = x. As the electrons evolve in

r, they become darker, and are finally black at r = 1. The separatrix is drawn defining

the boundary between closed and open phase-space paths. From the initial

positioning, some of the electrons gain energy from the optical field and move ahead

of the average flow of electrons. Other electrons lose energy to the optical field and

slip behind the flow in phase. The combination of the two causes phase bunching

near = x at 'r = 1. From (2-21) as stated previously, bunching near this phase

causes gain in the optical wave. Another way to view this is that the net electron

10



**FEL Phase Space Evolution**

j=l ao0=3.14 Vo0=2.6

10 Gain 0.2

0
4) 0.2

0

-n/2 3n/2 0 1

Figure 2-2: Electron phase space evolution in weak fields

energy has decreased from -r = 0-+I because <v(T = 1)> is less than <v( = 0)>.

Plotted to the right in figure 2-2 is the gain in optical energy G('-) = (a(.C) 2 - a2o)la2o ,

and the change in optical phase 0(r). Both the optical phase and amplitude start to be

driven as the electrons begin to bunch.

For weak fields with low gain, the gain G(c) can be solved analytically [Ref. 3] as

well as numerically as demonstrated above. By assuming low gain and low current,

the pendulum equation can be solved by perturbation theory to the lowest order in ao

and j. By using energy conservation and assuming the electrons are initially

uniformly distributed in phase and are monoenergetic with phase velocity vo, the

average energy lost from an electron is ymc 2(<v> - vo)/4xN. Substituting in the

11



FEL Gain Curve *****

j=1 a0=1

Gain 0.135

0.0

-0.135

-16 V0  16

Figure 2-3: Gain spectrum for weak fields and low current

pendulum equation expansion results for <v> gives the small signal gain equation

[2 - 2cos(v° ) - v °' s in(v  
(2-26)

Figure 2-3 plots the optical field gain at r = 1 as a function of initial electron phase

velocity vo. The curve is anti-symmetric about vo = 0 and has a maximum at Vo = 2.6.

The maximum small-signal gain is given by G = 0.135j at vo = 2.6. The implications

of the gain curve are that electrons at resonance, vo = 0, while having the maximum

coupling with the optical wave will lose as much energy as they gain while electrons

slightly off resonance drive the optical field amplitude.

E. SIDEBANDS AND THE TRAPPED-PARTICLE INSTABILITY

In strong optical fields, the electrons can be trapped in deep potential wells

formed by the combined optical and undulator field forces. Electrons near the bottom

of the well oscillate in harmonic orbits at the synchrotron frequency. As mentioned
0

previously x, = 02-, is a fixed point in phase space of , vs. v = . By taking

= r2 + x and expanding the simple pendulum equation (2-12) in x for x c r2 it

12



**FEL Phase Space Evolution**

j=l ao0=40 V 0=7

20 Gain 0.05

L 0

0.05

-20
-x12 3n/2 0 1

Figure 2-4: Phase space illustration of trapped-particle instability

can be seen that electrons close to the fixed point will oscillate with a synchrotron

frequency of vs = la 1li2 . For an electron to complete one full synchrotron oscillation

requires la 11/2 = 2z, or laI = 4X2 = 40. This corresponds to a peak-to-peak separatrix

height of 41a 1l/2 =25. Figure 2-4. shows a phase-space evolution of 10 sample

electrons evolving from r = 0-*I. The electrons are initially evenly distributed in ,, and

are given the same initial phase velocity v. With an optical field strength of a = 40,

dimensionless particle density of j = 1, and an initial optical phase 0 0, the electrons

closest to the stable point r = rJ2 complete one full synchrotron oscillation.

As the electrons slip back past the optical wave due to the difference in relative

speeds, the electrons continue to execute synchrotron oscillations which modulate the

13



optical wave. The modulations appear as sidebands centered around the fundamental

frequency vo by a difference of v.. In the case of one synchrotron oscillation or single

sideband, the sideband spacing from the fundamental mode is given by v. = 2n. For

multiple sidebands the spacing from the fundamental is v. = 2in, where n = 1,2,3....

It should be noted that the shift in wavelength from the fundamental wavelength is

given by "XA = v,12xN.

In an FEL oscillator where the sideband is developed over many passes by the

optical wave, the trapped-particle instability and sideband growth is dependent on the

dimensionless current j and the loss factor for each pass 0. If J and 0 are low

enough the trapped-particle instability will not occur, and the FEL will produce a single

mode. Sufficiently raising either j or 0 however, will lead to the trapped-particle

instability.

14



III. COMPARING SIMULATIONS AND EXPERIMENTAL
OBSERVATIONS OF THE TRAPPED-PARTICLE
INSTABILITY IN THE STANFORD FEL

A. INTRODUCTION

Short electron pulse FELs, such as the Stanford FEL have the unique ability to

exhibit exotic non-linear effects in the optical field with only minor adjustments to the

resonator mirrors. This characteristic allows differing FEL regimes to be studied

without alterations to the initial electron beam entering the undulator.

Comparisons are made between experimental observations at the Stanford FEL

and simulations run at the Naval Postgraduate School. Close agreement is found

between the desynchronism curves, optical spectra, and the electron spectrum. Stable

sideband development due to the trapped-particle instability is observed at Stanford,

and predicted by simulations for the corresponding desynchronism value. At small

desynchronism values, unstable sidebands are seen at Stanford as well as being

predicted by simulation along with limit-cycle behavior.

The Stanford FEL [Ref. 6], like many FEL oscillators, is driven by short,

picosecond electron pulses which drive equally short optical pulses. The Stanford

Superconducting Accelerator (SCA) produces approximately 30,000 electron

micropulses in each macropulse. Each micropulse is approximately 3 picoseconds

long with an 84 nanosecond spacing between micropulses. The macropulse

containing these short pulses has a length of three milliseconds with a 100 millisecond

spacing between each macropulse. The spacing between macropulses ensures that

any optical pulse in the FEL oscillator cavity will have decayed away prior to the

following macropulse entering the undulator. The average macropulse current is

I-200 microamps and the initial electron beam energy is adjusted to alter the

15



wavelength of the emitted light between X = 3.7gm and X. = 1.5nim. The Stanford

undulator consists of stationary magnets placed with N = 120 periods and a

wavelength of X0 = 3.6cm. The peak magnetic field on axis is B = 2900 Gauss, giving

an undulator parameter of K = 0.7.

B. SHORT PULSE THEORY AND EFFECTS

The method of determining the optical pulse evolution is based on the self-

consistent numerical solution of the coupled Maxwell-Lorentz equations for the optical

wave and electrons as discussed in section II, but with a few additions that deserve

explanation [Ref. 7]. All longitudinal lengths with respect to the undulator, electron,

and optical pulse are normalized by the slippage distance, NX, so ZINX. -4 z. The

slippage distance is the distance a resonant electron lags a point in the optical wave at

the end of the undulator. Figure 3-1 illustrates the concept of slippage distance as the

electron traverses one period of the undulator. The optical and electron pulse are

divided up into equally spaced sites in z. The optical sites form spatial modes a(z)

which can be extended to equivalent longitudinal wavenumbers a(k). The pendulum

and wave equations (2-21.2-22) become slightly modified for pulse analysis with
00

=laz lcos( zc + Oz) ,(3-1)

and

0
Oa z=-jz-j< exr,-i~z< ) > (3-2)

The subscript z denotes the position of an optical site in the undulator. The subscript

z--tc denotes the corresponding electron site that was previously ahead of the optical

site along the length of the undulator. The need for two separate subscripts arises

due to the difference in velocity between the optical pulse and the electron pulse. The

light traveling at speed c, remains fixed in z, while the slower electrons slip back to

site z-r. When the electrons pass through the undulator, those at a site z interact

with a range of sites in the optical wave envelope. As the electrons slip back past the
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Figure 3-1: An electron traveling from left to right slips one optical

wavelength . as it traverses one undulator period X0

optical wave the electron beam and optical wave exchange information, and the

electrons pass information from one optical field site to another. The dimensionless

particle density is j(z) = 8N(neKL) 2p(z)/y 3 mc 2, where p(z) is the actual particle

density at site z.

The electron pulse is assumed to have a parabolic profile given by

j = Io(1-2z 2/CZ2) where oz is the electron pulse length and Jo is the peak current.

The electron pulse is represented by equally spaced electron sites that each hold an

equal number of sample electrons. Uke the electron pulse, the optical pulse is

represented by sites the same distance apart as the electron sites. With each time-
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step, as an optical site passes over an electron site, the pendulum and wave equation

are numerically solved for the corresponding electron and optical interaction at each

site.

In strong optical fields the electrons can be trapped in deep potential wells

formed by the combined optical and undulator field forces. Electrons near the bottom

of the well oscillate in harmonic orbits at the synchrotron frequency. By looking at the

phase-space evolution of the electrons, it is observed that a field strength of la I = 4X2

causes one oscillation of the trapped electrons near the stable phase = r,2. The

synchrotron frequency is given by v. = la 11"2. The oscillation of the bunched electrons

couples to the optical wave causing the amplitude and phase to oscillate at the

synchrotron frequency leading to the formation of side-bands. The growth of the

sideband power is the trapped-particle instability. The trapped-particle instability along

with the extremely short longitudinal length of both the optical and electron pulse lead

to exotic behavior that does not occur in FELs with longer pulses.

In a short-pulse FEL [Ref. 3,8], the optical pulse travels down the undulator at

velocity c, while the electron pulse travels slightly slower at velocity Doc. The slippage

distance N. measures the amount the electron pulse lags the optical pulse at 'r = 1.

In an FEL oscillator, the electrons must be timed to enter the undulator each time the

optical pulse makes one round trip At = 2SIc where S is the mirror separation.

Assuming the electron and optical pulses start out at the same time, the leading edge

of the optical pulse will immediately start over-taking the electron pulse before any

significant bunching of the leading electrons occurs. This lack of coupling between the

initial edge of the optical pulse and the electrons causes the leading edge of the

optical pulse to decay with time while building up the back of the optical pulse. The

net result is that the optical pulse centroid has a speed slightly less then c. To

account for this slower speed, the mirrors are placed slightly closer together than

would be needed to synchronize an uncoupled pulse. The shorter distance is referred

to as the desynchronism d, and normalized by the slippage distance N?. The output
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power and optical mode of an FEL are sensitive to slight variations in d. When d is

too large, the electron and optical pulses do not overlap over a sufficient number of

passes, and steady state FEL coupling can not be achieved. Decreasing d causes

the coupling, and the optical power to increase. As d continues to decrease, the

optical amplitude of the wave continues to increase leading to the trapped-particle

instability and development of stable sidebands. Letting d get even smaller leads too

even larger optical powers, and unstable sidebands that may be cyclic or chaotic over

time. Near d=O, the optical power peaks, and then quickly goes to zero because the

optical wave and electron pulse are again uncoupled.

For short-pulse FEL's the interaction at the edges of both the optical and electron

pulse play a large part in determining the final optical power and waveform, along with

helping to explain the sensitivity of the FEL to minor changes in d. This concept is

best illustrated using parameters from the Stanford FEL. A 3.0 picosecond micropulse

equates to a length of approximately 900pgm. When the FEL is lasing at X = 3.74 m,

the micropulse is only two slippage distances long. Since one electron site can

exchange information along one slippage length within the optical wave and vice

versa, the electrons that interact with the edge of the optical wave account for close to

half of the total electrons in the beam. If the electron beam is made of longer pulses

which cover many slippage distances, the edge effects of the electron beam and

optical wave play a less significant role in the final optical output of the FEL.

C. SIMULATIONS AND EXPERIMENTAL OBSERVATIONS

A comparison between the observed [Ref. 9] and simulated desynchronism curve

while lasing at X = 3.7pgm is shown in figure 3-2. Both curves are quantitatively similar

showing a peak power at 1lpm desynchronism, corresponding to dimensionless

desynchronism d = .002. The optical power increases as d decreases. As d

decreases, the FEL exhibits stable and unstable sideband operation. In the

simulations, the distance z is given in terms of the slippage distance. The optical

19



Normalized Power

a Simulation + Experiment

1=.

0

0 2 4 6 8 10 12 14

Desynchronism distance (gm)

Figure 3-2: Simulation and experimental desynchronism curves at X.= 3.71im

wavelength

power spectrum, log(P(v)), and electron energy spectrum, f (v), are given in terms of

the dimensionless phase velocity v = LQ k + ko )Oz~ - k ]. The input parameters for

the simulations are the particle density jo = 0.5, the electron pulse width in terms of

the slippage distance az = 2.0, the loss coefficient for each pass 0 = 140, and the

number of undulator periods N = 120.

The first comparison is made at a relatively large desynchronism d = 0.018.

Figure 3-3 shows the simulation and experimental results for lasing at X 3.7igm with

a non-normalized desynchronism of 8.Lm. From left to right, the three upper frames

show the final pulse shape, optical spectrum, and electron spectrum at the end of the
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FEL Pulse Evolution
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Figure 3-3: Simulation results and experimental power spectrum at

X= 3.71rn wavelength, and with a desynchronism of Bum
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simulation. The middle three frames, from left to right show the evolution of the optical

pulse shape, optical spectrum, and electron energy spectrum versus the undulator

pass number n. The lower three frames of the simulation display the electron pulse

shape along with slippage, the small-signal gain spectrum G(v), and the optical power

P versus the undulator pass number n. The experimental power spectrum [Ref. 9] is

presented below and plotted versus the optical wavelength X. In the experiment, the

optical power is time-averaged over many micropulses. The upper-center plot of the

simulation shows the optical power spectrum P(v) centered about the frequency for

maximum small-signal gain. The experimental results show only a single optical

frequency with no sidebands. Both experiment and simulation show weak optical

fields with no trapped-particle instability, as demonstrated by no sidebands being

present. The simulation has a maximum field of la(z)l =10 which is less than the

required v_2 = la I = 4x2 for one synchrotron oscillation, and sideband development

[Ref. 10]. The electron spectrum starts to spread out in the negative v direction at

n = 800 passes. This corresponds to the point where the optical and electron pulse

start to reach strong fields and produce a steady state power level. The spreading out

of the electron spectrum is due to electrons losing and gaining energy with respect to

the optical wave.

Decreasing the desynchronism to d = 0.003 gives rise to the trapped-particle

instability and sidebands. Figure 3-4 shows the results of lasing at X = 3.7prm and a

desynchronism of 1.5Am. The simulation shows that the optical field reaches la I = 40,

and is large enough to cause one synchrotron oscillation. The center-left frame in the

simulation demonstrates how the optical pulse changes shape in a cyclic manner over

time. The optical power spectrum is shown in the upper-center frame. This also

illustrates the importance of the electron interaction between the leading and trailing

edges of the optical wave. The center frame shows the growth of a stable sideband

spaced v. = 5.0 away from the fundamental. It should be noted that the fundamental

is slightly to the right of maximum small-signal gain because of strong field saturation
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FEL Pulse Evolution
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Figure 3-4: Simulation results and experimental power spectrum at

X= 3.7 jun wavelength, and with a desynchronism of 1 .51.im
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[Ref. 4]. This shows good correlation with the observed experimental spectra shown

below the simulation. Using v. = 2xN&V% we see that the sideband is spaced at

v s = 7.0 for the experimental observations. By comparing the right-bottom frames of

the simulations in figure 3-3 and figure 3-4, it can be seen that the steady-state final

optical power is greater with sidebands present. The formation of a sideband allows

the FEL to obtain a higher optical power due to limiting the onset of saturation by

effectively decreasing the length of the undulator. This is explained in greater detail in

chapter 4.

Unstable sidebands occur as the desynchronism is further decreased to

d = 0.001. Figure 3-5 shows lasing at X = 3.71gm with less than 0.5n desynchronism

in the Stanford experiment. Uke the previous figure, the optical pulse changes it's

spatial shape in a cyclic manner over time. However, in this case vs 2 = la I =71. The

center frame shows that the sidebands are no longer steady, but are cycling in and out

from the fundamental. In the simulation, this sideband evolution leads to limit-cycle

behavior in the power. The bottom-right frame of the simulation shows how the optical

power cycles around a steady-state value at the same frequency as the sideband

oscillations. The experimental spectrum taken at the same value of d appears to be

chaotic over time with no clear sideband structure at all. However, it should be noted

that the experimental data was time-averaged over many hundreds of micropulses. It

is quite possible that cyclic sidebands and limit-cycle behavior were present, but the

spectral signature for this behavior was washed out in the time-averaging process. In

either case, both simulation and observation show a broader optical spectrum than the

previous examples along with increased optical power. From the simulation, it should

be noted that the final electron spectrum is much more spread out than in the previous

examples, This is again attributed to the increase in optical power as the electrons

lose more energy per pass.

If the desynchronism is decreased to d = 0.0, so there is no desynchronism, the

electron beam and optical field w;Il not couple to produce gain and steady-state output.
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FEL Pulse Evolution ****
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Figure 3-5: Simulation results and experimental power spectrum at

X = 3.71im wavelength, and with a desynchronism of < 0.51gm
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Figure 3-6 is a simulation performed with d = 0.0. As can be seen, any growth of the

optical wave and optical power is small and transient due to the lack of effective

coupling between the optical pulse and the electron pulse.

The electron spectrum at the end of the undulator is also compared to

experiments. Figure 3-7 shows the observed and simulated electron distribution after

lasing at . = 1.5gm with a stable optical pulse that exhibits no sidebands. The energy

spread is given in terms of the electron phase velocity v where Av = 4xNAEIE, and

AE is the spread in electron energy away from E. For the experimental observation,

the curve centered at AE = 0 is the electron energy spread prior to the FEL interaction

for the experiment. The frame at the right shows the electron energy spread after the

FEL interaction in the simulation. The width of the energy spread is proportional to the

optical power, Av = 4 la 112. In the simulation the spread is Av = 16, and in the

experiment the spread is Av = 13. Both experiment the simulation show two distinct

peaks, these can be most easily explained by phase-space bunching of the electrons

at an energy close to resonance and at an energy less than resonance.

D. CONCLUSION

From the comparisons done above, it is clear there that there is close agreement

between the desynchronism curves, optical spectra, and the electron spectrum. The

simulations qualitatively model the Stanford experiments throughout a range of

desynchronism values, including those in which exotic short-pulse effects are

demonstrated. Stable and unstable sidebands due to the trapped-particle instability

are experimentally observed, and predicted by simulations at corresponding

desynchronism values. While limit-cycle behavior, predicted by simulation, is not

positively confirmed by experimental results, the chaotic optical spectra observed at

small desynchronism is an indication that limit-cycle behavior may actually be

occurring in the Stanford FEL.
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TEL Pulse Evolution
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Figure 3-6: Simulation results at X = 3.?jgm wavelength, and with
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Figure 3-7: Simulation and experimental electron spectra at

A= 1 .5Wi wavelength for a stable optical pulse
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IV. TWO MODE THEORY AND SIDEBAND ANALYSIS

A. INTRODUCTION

In an FEL oscillator with strong optical fields, the electrons can be trapped in

deep potential wells formed by the combined optical and undulator field forces.

Electrons near the bottom of the well oscillate in harmonic orbits at the synchrotron

frequency. The electron motion causes a modulation in the optical field which can be

amplified into a sideband after multiple passes of the optical wave through the

undulator. This process is referred to as the trapped-particle instability as discussed in

section II.

The trapped-particle instability and subsequent sideband development are strong

non-linear effects that have important consequences for present and future FEL

operations. For many applications including weapons, the ideal FEL would have high

optical power, narrow spectrum, and no sidebands. However, in the untapered FEL

high power tends to cause the formation of sidebands, and the more sidebands

present the higher the power and the greater the FEL efficiency. By decreasing the

resonator 0, or the beam current j the sideband power can be decreased or

completely suppressed. However, this comes at the expense of degraded FEL

performance. As mentioned in the previous chapter, short pulse FELs can control

sideband power by mirror positioning, but once again this comes at the expense of

FEL performance. Other methods for suppressing sidebands include selective

resonators that impose a large loss on the optical field at or near the sideband

frequencies. This too, limits FEL performance since the fundamental mode is limited

in growth by it saturation mechanism.

To gain a better understanding of sideband development and operation, the FEL

dynamics between electrons and optical field will be investigated for the situation

where only two optical modes are allowed to exist. Allowing for two modes, a

fundamental and lower sideband, simplifies the analysis over multiple sidebands while
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still being representative of the conditions present in many FELs operating with

sidebands.

B. TWO MODE THEORY

To study the electron and optical dynamics in the oscillator with two optical

modes, equations of motion for the electrons must be developed and then used to

derive the driving current in the optical wave equation. This can be accomplished in a

manner similar to the single mode pendulum and wave equations [Ref. 11,12],

producing a two-mode pendulum and wave equations.

With two optical modes present, the electron equations of motion are

dt me

A= e s)(4-2)

dt mc

where 9 and # are the electric and magnetic fields of the fundamental optical field,

and 9, and il, are the electric and magnetic fields due to the sideband optical field.

The undulator has a magnetic field denoted by Elm. The fundamental and sideband

optical fields are of the form

9 = E(cosV,-sinV,O) , = E(sinV/,cos,#,O) , (4-3)

ts = Es (cosys,-sinVs ,0) , s = Es (sinis,cos~s) , (4-4)

where 41 = kz-(ot+$ and V, = k.z--(ot+48 , k and k. are the wave numbers, c0 and co

are the frequencies, and * and *s are the phases of the respective waves. The

undulator field is considered to be helical with a magnetic field of the form

Elm = B(cos(koz),sin(koz),O) (4-5)

Substituting (4-3),(4-4),(4-5) into the force equations (4-1),(4-2) and solving for the

perpendicular electron motion while noting that the transverse force due the optical

fields is negligible compared to the undulator field yields
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= -K (cos(koz),sin(koz),O) , (4-6)

where K = eBXo/2xmc 2 is the undulator parameter. Eq. (3) now becomes

dx eK(Ecos(koz+) + Escos(koz+Ws)) (4-7)
dt mc y

Noting that y-2 = 1j.2. I 2z, and using P. in (8). this yields

I_ = (1 +K 2 )_ (4-8)
-? Y

Defining = (k + ko)z- (ot as the electron phase with respect to the fundamental

optical wave, taking d2 Jdt2 along with the resonance condition X/2. = -2/(1 + K2),

and equating OZ in terms of and I gives

__7 (4-9)
(k + ko)c 2ko 2koc

since ko -c k. Equating (4-7) and (4-9) while introducing the dimensionless time 'r and

the dimensionless optical fields Ia I and Ia. I results in the two-mode pendulum

equation
0 00

v = I= acos(C + 4) + las Icos(koz + iVs) (4-10)

where " " denotes d/dt. By using the approximation k,k, :> ko and the definition

AW = ((k - ks)/k)2xN, the z dependence can be eliminated and the pendulum

equation can be expressed as
00

= Ia Icos( +)+ la, Icos(- + AvSr +4s) .(411)

As stated earlier, we are concerned with the first sideband caused by synchrotron

oscillations occurring at Av = 2%:.

The next step is to develop a wave equation for the optical field. The two-mode

optical field has the vector potential

-E(sinW,cos,,0) + E(sinvcosAVs,.) (4-12)
k30
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Substituting this into the general wave equation

S2  -1 (4-13)

where t1j is the transverse current from the transverse motion of the electron beam,

and applying the slowly varying amplitude and phase approximations to eliminate all

terms with two derivatives, yields the left hand side of the wave equation.

[2 1 = 2 - (cosr,_siW, O)_2E lsimF,cosW,O) (4-14)IV 2 1 c c

+- Es (costs ,-sins ,) - 2 Es s (sin rs ,costs ,O)

c C

As with the single mode wave equation [Ref. 5], the rapidly rotating terms of (4-14) are

removed by projecting four polarization vectors onto the wave equation, and the right

hand side of (4-13) is expressed in terms of the summation of single particle currents.

Combining constants into dimensionless form results in the two-mode dimensionless

wave equations

0 0

a + asexp(iAvst) = -j<exp(-iQ> (4-15)
0 0

a + a exp(iAvsr) = -j<exp(-i(1 - Av./2mN))>

By assuming that Avs -c 2xN, consistent with the slow-varying amplitude and phase

assumption, the two equations above are equivalent and the two-mode wave equation

is just
0 0

a + asexp(iAvs r) = -j<exp(-i1)> (4-16)

By assuming the gain for both the fundamental and sideband optical modes are small
o o

over one pass a and a s can be separated allowing an equation for each mode.

Integrating (4-16) over r from 0 to 1 and letting Av. = 2m results in
I

Aa = -i< Jo exp(-i,)dT > (4-17)

Multiplying (4-16) by exp(-i( +2xr)) and again integrating over time yields
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Aas = -j< 'oexp(-if + 2xt)dc > (4-18)

C. TWO STEADY-STATE MODES

Experimental data and full multi-mode simulations show that with one sideband

present, it is not uncommon for a single sideband to have slightly less or as much

power as the fundamental in steady-state. With this in mind, the case where both

modes have the same optical amplitude and low gain will be looked at to illustrate the

interaction between electrons and optical modes.

From an electron's frame of reference, as it travels down the undulator starting at

= 0 , it will see N periods from the fundamental mode overtake it by the time it

reaches the end of undulator at r = 1. If a sideband is present, offset from the

fundamental by vs = 2n, the electron will see N-1 sideband periods overtake it as

well. If both modes are pictured as rotating polarization vectors, the sideband vector

will rotate once, or 27c relative to the fundamental mode vector as the electron passes

down the undulator. This will cause interference of the optical field dependent on r.

In essence, the electrons feel the force from a beat wave composed of two different

amplitudes and frequencies. The total optical field experienced by an electron at any

time , la,(c)l, is the sum of the fundamental and sideband optical field at ,r. If the

sideband polarization vector is assumed to rotate relative to a fixed fundamental vector

with a frequency of 2xT, the total dimensionless optical field strength is given by

lat(r)l = [Ia12 + Ia. 12 + 2Ia Ila, lcos(2xw + Os)1 /2  
, (4-19)

where *s is the initial phase angle of the sideband, with the fundamental assumed to

have an initial phase angle of zero. From (4-19) it can be seen for given values of Ia I

and las I, the maximum and minimum values for the total optical field strengths are

Independent of the initial phase difference t.. However, the value of T at which the

maximum and minimum occur is dependent on the initial values of 4.. The value of

t. has an important influence on the electron dynamics and optical gain.
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Figure 4-1: Optical tield profile experienced by an electron with os 7

Figure 4-1 plots the total optical field experienced by the electrons versus 'C, with

la I = la, I = 18, and o, = x. Electrons injected into an undulator containing this field

would experience the maximum force due to the optical electric field at 'I = 0.5 and a

minimum of zero force at T = 0 and 'c = 1.0. Compare this with figure 4-2, where Ia I

and la, I are the same but o, = 0.4no. The maximum and minimum amplitudes are the

samie, as figure 4-1, but the field is offset by x = 0.3. The optical field profiles in

figures 4-1 and 4-2 not only represent the field strength with respect to 'T as

experienced by a relativistic electron, but can also be thought of as the shape of the

optical wave that overtakes an electron traveling down the undulator. The parabolic

shape shown in both figures represents one slippage distance length of the optical
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** optical field magnitude **
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Figure 4-2: Optical field profile experienced by an electron with =4

field, only inverted. This means that the field strength shown at 'T 0 is the leading

edge of the optical envelope, and the field strength shown at ¢ = 1 is the trailing edge,

referring to the end of a slippage distance. The optical wave itself is made up of a

continuous series of parabolic-shaped fields which is nothing more than the absolute

value of the Fourier transform of a two mode frequency spectrum of equal magnitude.

An electron traveling down the undulator will only see one slippage distance of the

optical field. Different electrons start at different positions within the slippage distance

corresponding to different values of *s. For an electron beam with a long pulse,

length 3. NX, all values of s are sampled equally. For an electron beam with a short

pulse, length < NX, values of S, are not sampled equally. Another consequence of
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the optical field profiles shown in figures 4-1 and 4-2 is that the effective length of the

undulator is shortened. At the points of the undulator where the optical field strength

is close to zero, the undulator acts like a drift space where the electrons feel no

phase-space forces. This will prove important when the saturation mechanisms for the

two-mode FEL are compared to a single-mode FEL latter in this chapter.

D. STEADY-STATE PHASE-SPACE EVOLUTION

The above section discussed the optical field present in an FEL oscillator at

steady-state with a single sideband of equal magnitude to the fundamental present.

The next step is to see what effect this field has on the electron beam. By numerically

solving the two-mode pendulum equation (4-11) for low gain, figure 4-3 shows the

phase-space evolution of 8 sample electrons as T goes from 0 -4 1. The electrons are

lightly shaded at r = 0, gradually getting darker as Tc --* 1. The electrons sampled are

uniformly distributed over a single wavelength X of the fundamental and cover electron

phases r = 0 -+ 21c. Other parts of the beam several wavelengths ahead and behind

start at a different phase s.. The initial phase velocity is vo = 2.6 which is chosen for

consistency with weak field models, but does not necessarily give the highest gain in

stronger fields with sidebands present. The initial conditions are the same as used to

develop the optical field profile in figure 4-1. The electron phase-space motion shown

in figure 4-3 is caused by the changing optical field in figure 4-1. A better

understanding of the electron motion can be realized using the two-mode pendulum

equation written as
00

, = la,(T)lcos(,) , (4-20)

where lai(T)l is defined by (4-19). Equation (4-20) is analogous to the single-mode

pendulum equation (2-12), except the dimensionless optical amplitude is changing with

Tr. With this in mind, the electron phase-space paths shown in figure 4-3 are easily

explained. At r = 0 the electrons sense little or no optical field and just drift in phase-

space with constant phase velocity vo. As T increases so does the optical field until it
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*** FEL Phase Space Evolution ***
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Figure 4-3: Phase-space evolution of sample electrons with Os x

peaks at r€ = 0.5. While the optical field is increasing the electrons are being driven

into curved phase-space paths with the majority of electrons decreasing in phase

velocity or losing energy. After the optical field peaks it decreases to zero as 't --> 1.

As the field strength decreases only electrons close to resonance, v = 0, will continue

to be effected by the optical field. The majority of electrons, with v < 0, will start to

drift in phase-space open orbits as demonstrated by the lower darkened electrons in

the figure. For single-mode phase-space evolution, a separatrix was defined as the

phase-space path dividing open orbits from closed orbits for all c . For the two-mode

pendulum equation a true separatrix does not exist because the optical field strength is

constantly changing with rc. It is helpful to look at an "Instantaneous separatrix", a
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*** FEL Phase Space Evolution ***
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Figure 4-4: Phase-space evolution of sample electrons with 0 - O.4n

separatrix defined at each instant -r. This instantaneous separatrix will grow and shrink

in amplitude as the optical field strength increases and decreases with 'C. When the

separatrix reaches its maximum height all the electrons are captured in closed orbits.

As the separatrix decreases in amplitude, electrons further off resonance will start

going into open orbits. This again explains the phase-space paths demonstrated in

figure 4-3. It turns out that 7c = is the initial sideband phase that generates the most

gain.

Figure 4-4 shows the phase-space evolution with the same initial parameters as

figure 4-3 with the exception that Os = 0.4z, which corresponds to the optical field

profile of figure 4-2. It is clearly evident that changing the initial phase difference
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between fundamental and sideband has a dramatic effect on the electron phase-space

paths. Unlike the previous example, the optical field latl starts close to a maximum at

= 0. This causes electrons distributed in between z/2 and x to experience the

greatest change in phase velocity v, a consequence of (4-20). As the optical field

starts to decrease the separatrix shrinks, some electrons are placed in open orbits

while others take on less severely curved phase-space paths. Once the field reaches

a minimum and starts to increase, electrons that were previously in open orbits have

now drifted into phases that experience the greatest phase acceleration. These

electrons are deaccelerated to lower values of v as demonstrated by the darkened

electrons on the right side of the figure.

E. TWO-MODE GAIN AND PHASE SHIFT

Once the electron phase-space trajectories are understood, the next step is to

investigate the effects of the electron motion on the optical wave for the case of low

gain. Assuming the electrons entering the undulator are uniformly distributed in the

microscopic phase ;0, and monoenergetic with phase velocity vo, the average energy

lost by an electron is ymc 2(<v> - vo)I4xN, and the gain of the optical field can be

expressed as G = 2j(vo - <v>)/ao2 [Ref. 4]. This allows the gain to be calculated from

the phase-space plots with nothing more than the two-mode pendulum equation and

the low gain assumption that Ia I and la, I do not change enough from r = 0 -4 1 to

effect the electron phase-space evolution. Calculating the gain in this manner uses

energy conservation between electrons and optical field.

Figure 4-5 is a plot of gain versus initial sideband phase s.. Like the previous

examples, lal = la I = 18, j=l, and vo= 2.6. The gain, G( %), is a maximum at a

sideband phase of x = , and the gain averaged over all initial sideband phases is

G = 0.02. As expected from the phase-space plots of different initial phase angles,

the gain is dependent on the initial sideband phase.
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**Two-Mode FEL Gain (E.B.)**

j=l ja1=18 Ia s 1=18 Vo0=2.6

0.040
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Figure 4-5: Optical field gain vs. initial sideband phase using energy

conservation

The gain can also be determined from the two-mode wave equations (4-17), and

(4-18). Using these, the two-mode gain can be written as

G = (la,(1)l2 + la(1)12 - la.(0)l 2 - la(0)12)/(la,(O)12 + la(0)12). Figure 4-6 is a plot of

gain versus initial phase difference between the sideband and fundamental modes

using the two-mode wave equations to derive the gain. The input parameters are the

same as those used for figure 4-5, and the output gain curve is the exact same. This

is reassuring because it validates the two-mode theory against the energy

conservation method used to generate figure 4-5. A further check of the two-mode

theory is made by comparing the gain curves for the two methods with input
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* Two-Mode FEL Gain (2M-W. eqn) *

j=1 ale=18 Ia8 1=18 V0 =2.6

0.040
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Figure 4-6: Optical field gain vs. initial sideband phase using the

two-mode wave equations

parameters of Ia I = 18, and Ia. I = 4. Figure 4-7 plots gain versus phase difference

using the energy conservation method, while figure 4-8 plots the same using the two-

mode wave equations. The plots are exactly the same illustrating that the two-mode

wave equations are valid over a wide range of initial optical field strengths.

Unlike the method of energy conservation using electron phase velocities v, the

two-mode wave equation allows the development of each mode to be determined

separately. Figure 4-9 plots the gain for each mode separately as a function of initial

sideband phase. In the case of this plot, the sideband starts off with the larger gain at

= 0. Both modes have approximately the same maximum, minimum, and average
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Two-Mode FEL Gain (NC.B.)

j=1 al=18 l a 14 vin2.6
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Figure 4-7: Optical field gain vs. initial sideband phase using energy

conservation

*Two-Mode 1ZL Gain (2K-If. eqn)*

j=2. tal=IS l a 1=4 voa2.6
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Figure 4-8: Optical field gain vs. initial sideband phase using the

two-mode wave equations
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*Individual Two-Mode FEL Gain*
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Figure 4-9: Optical field gain for each mode vs. initial sideband phase

using the two-mode wave equations

gains along with some symmetry with respect to each other around the initial sideband

phase for minimum gain.

Figure 4-10 plots the individual mode gains with initial optical fields of la I = 18,

and la, I= 4, as in figures 4-7 and 4-8. For this example the sideband gain starts

negative at *, = 0, but reaches a maximum gain of G = 0.10 at an initial phase

difference of #, = 4.0. It is to be expected that the sideband has a higher maximum

gain then the fundamental, since it starts with an optical field that is further from

saturation then the fundamental. What is surprising is that there is a significant band

of phases where the sideband gain is negative.
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*Individual Two-Mode FEL Gain*
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Figure 4-10: Optical field gain for each mode vs. initial sideband phase

using the two-mode wave equations

Just as the gain can be calculated from the two-mode wave equations, so can

the phase evolution for each mode, A0 , and As.. The difference between these two

phase evolutions determines how much the optical pulse shape slips ahead or behind

of reference mark traveling down the undulator with it at the speed of light. For

example, a difference between the two phase evolutions of x would mean that if a

reference mark was placed by the peak of a two-mode optical wave at the beginning

of the undulator, the mark would be at a trough in the optical wave when the wave

reached the end of the undulator. What holds for reference marks also holds for

electrons, a difference in phase evolutions or phase shift between the two optical

modes is equivalent to a phase shift in , for an electron interacting with the optical
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field. Because of this, large shifts in phase can have a strong influence on electron

dynamics and subsequent gain. From simulations it turns out that large differences in

the two phase evolutions occur when the amplitude of the sideband is very small

compared to the fundamental mode. But at that point, the optical envelope resembles

one for a single mode wave and any phase shift of the optical wave from I = 0 --* 1

has little effect on the electron dynamics. As the sideband grows to the same order of

magnitude as the fundamental the phase shift between modes decreases so its effects

can be neglected from ' = 0 -+ 1.

Figure 4-11 plots the phase shift, Ad, between sideband and fundamental as a

function of the initial sideband phase. The initial optical fields are Ia I = Ia. I = 18,

consistent with previous examples. The maximum phase shift never exceeds 0.03 and

the average phase shift is 0.007, both very small numbers relative to a half period

phase shift of x. It should be noted that the maximum phase shift occurs at the same

approximate initial sideband phase as that for minimum gain shown in figure 4-6. At

this phase *, = 0.2n both modes have minimum gain which corresponds to the

maximum phase evolution for each. Because of this the difference in phase evolutions

is more significant then at an initial sideband phase where both modes show larger

gain.

The above discussion showed with two optical modes present, the importance of

the initial sideband phase at = 0 with respect to the electrons. The electron

dynamics, optical field gain, and optical field phase shift are all dependent on the initial

sideband phase. The question then becomes, when looking at the performance of an

FEL after one or multiple passes of the optical field with a sideband present, which

initial sideband phase if any is controlling or critical to the FEL interaction? The

answer appears to be the complete spectrum of sideband phases from 0 -+ 2n.

Whether looking at a pulse of length greater then a slippage distance or a continuous

wave consisting of two modes, electrons injected into the undulator will be distributed

over all possible initial phases of the sideband on each pass. This is because all
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* Two-Mode Phase Shift (2M-W. eqn) *

j=1 Iai=18 jas1=18 v0=2.6

0.040
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Figure 4-11: Optical field phase shift vs. initial sideband phase using the

two-mode wave equations

initial sideband phases are present in one slippage distance of the electron pulse. If

figure 4-1 represents the optical wave shape over one slippage distance NX, at the

beginning of the undulator the incoming electron beam can be pictured uniformly

distributed underneath it. Since all initial phase differences of the sideband and

fundamental are represented by electrons, to determine the FEL performance at the

end of each optical wave pass the gain of each mode and the difference in phase

rates should be averaged over all initial sideband phases [Ref. 12].

Figure 4-12 is a simulation over multiple passes that averages the fundamental

and sideband gain over the spectrum of initial sideband phases At d for each pass.

The gain for each mode, as well as the resonator loss coefficient 0, is then used to
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* Two-Mode Optical Power vs Pass *

IaI=5 I as =0.1 V0 =2.6
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Figure 4-12: Fundamental and sideband power vs. pass number using

two-mode wave equations to derive gain for each pass

determine the change of the optical field of each mode for the next pass through the

undulator. The horizontal axis of the plot represents the number of passes n through

the undulator for the optical waves. The vertical axis represents the power for each

mode at the end of a pass, P = Ia 12. The initial optical fields are Ia I = 5, and

Ia. I = 0.1. These are chosen to be slightly below saturation values so as to minimize

simulation run time at low field strengths while still showing the development of the

sideband and steady-state values. The dimensionless current density is j = 1, the

initial phase velocity is vo = 2.6, and the loss coefficient is 0 = 43. The simulation is

allowed to run over n = 1500 passes. The plot shows the fundamental mode quickly

reaching saturation in N = 100 passes, then slightly declining as the sideband slowly
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reaches a steady-state value. The sideband development is delayed until the

fundamental mode saturates. Then it grows, but at a slower rate, until reaching

approximately the same field strength. The combined optical power for the two modes

is P = la 12 + la, 12 = 500. From the plot, it seems clear that the saturation value for

the fundamental mode does not appreciably change when a sideband is present.

A comparison is made between the above two-mode simulation and a true multi-

mode simulation using identical values of 0 = 43 and j = 1. Figure 4-13 illustrates a

multi-mode simulation with an initial optical field of la I = 1, with random signal

fluctuations Sa = 1 imposed at the fundamental mode. Over many passes other

modes are allowed to evolve at at their natural frequency. Periodic boundary

conditions are placed on the optical wave two slippage distances in length, with the

simple pendulum and wave equations being solved for sample electrons at sites

equally spaced along the optical wave. From left to right, the upper three frames

show the final optical wave shape, optical spectrum, and electron spectrum at the end

of the simulation. The middle three frames, from left to right, show the evolution of the

optical wave shape, optical spectrum, and electron spectrum versus the undulator

pass number n. The lower three frames, from left to right, display the optical power

gain versus n, the small signal gain spectrum, and the optical power versus n. The

final optical spectrum shows two distinct modes of equal amplitude separated by

vs = 2n, which is the same as the two-mode simulation. The final optical power,

P = 520 for the multi-mode simulation, closely matches the two-mode simulation as

well. Just as in the two-mode simulation, the lower-right frame of the multi-mode

simulation shows the optical power rapidly rising until saturation of the fundamental

mode. The power remains constant until the sideband starts to evolve, increasing to a

new steady-state level but at a slower rate than the previous growth. The sideband

starts development quicker in the two-mode simulation, but this is due to an initial

sideband field of las I = 0.1 being present to start the simulation vice noise as in the

multi-mode simulation.
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FEL Wrap Evolution *
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Figure 4-13: Multi-mode simulation showing fundamental and single

sideband

The left-upper frame shows the final optical wave shape over two slippage

distances. This wave shape corresponds to the optical profile in figure 4-1, but

inverted since the wave is overtaking the electrons vice the electrons overtaking the

wave. The left-center frame shows how the optical field shifts phase over many

passes. The frame is fixed at the end of the undulator and the optical wave is

considered to maintain the same phase from the end of one pass to the beggining of

the next pass. If there were no phase evolution of the optical field down the undulator

the peaks of the optical field would line up at the same position in the frame after each

sucessive pass. The optical wave drawing to the left would indicate a positive phase
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shift in the two-mode model with the fundamental phase being held constant at zero.

From the multi-mode simulation, the phase shift is AOd = .012, determined by finding

the number of passes it takes the optical field peak to slide one slippage distance (2X

radians) and dividing the former into 2n. Figure 4-11 approximately represents the

steady-state optical fields of the multi-mode simulation gives a value of Aod = 0.007

when averaged over all initial sideband phases. While not exact the two-mode method

gives values that account for the magnitude and direction of phase shift experienced

by the optical wave in the multi-mode simulation.

F. TWO-MODE SATURATION

For a single mode optical wave, saturation occurs when the opticIJ field strength

reaches a level where the electrons initially bunch in phase-space, but then debunch

as r --) 1. As the electrons debunch they start to increase there phase velocity v, and

take away energy from the optical field that they had previously deposited. Figure 4-

14 illustrates the phase-space evolution for a single mode optical field of Ia I = 25.4.

This particular amplitude is chosen because the it is equal in optical power to the time

averaged two mode optical field with Ia I = la. I = 18. The box to the right of the

phase-space evolution plots gain as a function of c. The gain peaks at , = 0.75, and

then starts to decrease. This is due to the electrons starting to move to absorption of

the optical field and debunch at r = 0.75. From the FELs standpoint maximum gain

could be achieved by shortening the undulator by one quarter. It would seem that a

shorter undulator is the way to enhanced FEL performance. Unfortunately a shorter

undulator would significantly degrade performance prior to saturation. The solution to

improved FEL performance would be to design an undulator that could somehow shed

a portion of its length just as saturation is reached. While this may be physically

impractical, the presense of a sideband accomplishes the same effect.

Figures 4-1 and 4-2 show how an equal magnitude sideband acts to decrease

the effective distance of the undulator by decreasing the amount of time an electron
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**FEL Phase Space Evolution**
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Figure 4-14: Single-mode phase-space with gain vs. T

sees a significant optical field. Figure 4-15 shows the phase-space evolution and plot

of gain versus r for a two mode optical field with Ia I = Ia, I = 18 and an initial phase

difference of , = xc. Underneath these plots is a plot of the gain spectrum from figure

4-5 with a vertical line depicting where the phase-space plot belongs relative to the

initial sideband phases possible. For the gain versus r plot the curve levels out at a

value at least double that for figure 4-14, and it does not decrease after reaching its

peak. The phase-space evolution shows the electrons going into open orbits with

v < 0 vice closed synchrotron orbits as in figure 4-14 that rob energy from the optical

wave. In addition, the electrons appear to stay bunched around = c, leading to a

larger peak gain. Of course figure 4-15 is the phase-space evolution for only one

initial sideband phase, the one that gives maximum gain. Figures 4-16 and 4-17 show
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Figure 4-15: Two-mode phase-space with gain vs. r, Os = x

the phase-space and gain evolutions for initial sideband phases of 0.4X and 1.6n

respectively. In both cases, the final gain at r: = I is greater then for the single mode

of figure 4-14 even though the optical waves have equal power. What should be

noted in both phase-space plots is some synchrotron motion of the electrons causing a

dip or plateau in the gain prior to r = 1. It appears that the initial sideband phases that

do not contribute as much to the gain as the phase with maximum gain are critical in
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**FEL Ph&** Space Zvolution *
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Figure 4-16: Two-mode phase-space with gain vs. c, O = 0.4n

maintaining the sideband present with electron synchrotron motion that can be

amplified over one or many passes.

Increasing the gain over each pass for the optical wave leads to increased

power. As the power increases with each pass the gain will start to decrease until the

gain from each pass is equal to the losses from the resonator cavity. When this
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G. CONCLUSION

With a single sideband of the approximately the same amplitude, offset by

v. = 2n from the fundamental mode, the %,wo modes combine to form a beat wave that

oscillates one half a period as seen by a relativistic electron traveling down the

undulator. The electron phase-space paths are best understood in terms of this

beating optical field. It can be thought to cause an "instantaneous separatrix" that

expands and contracts with the optical field amplitude. The initial phase of this optical

field, determined by the initial sideband phase is critical to the electron dynamics and

subsequent optical field evolution. Both the gain and phase rate of the optical field are

dependent on the initial sideband phase.

Comparing gain curves calculated using energy conservation and the two-mode

wave equation, one finds that they are exactly the same over a wide range of

amplitudes. In addition, the two-mode wave equations allow the gain for each mode to

be separated and analyzed, unlike energy conservation techniques. When both

modes are of approximately equal amplitude, the maximum gain is achieved when the

initial sideband phase is x:. Because an incomming electron beam will evenly

distribute electrons over all initial phases, the gain and phase rate must be averaged

over all initial sideband phases.

With a steady-state sideband present, the length of the undulator is effectively

shortened and allows more gain than when only a single mode is present. Hence, a

multi-mode optical field can postpone the onset of saturation, allowing the FEL to

generate more power then a single mode.
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